Applications are invited for postdoctoral fellowships from the Training Program in Cognitive Neuroscience through the Institute for Neural Computation at the University of California, San Diego. The program provides interdisciplinary training in cognitive neuroscience to create a new generation of cognitive neuroscientists studying normal and abnormal brain function. San Diego has a highly interactive research community in cognitive neuroscience, and 23 faculty members from the Salk Institute for Biological Studies and at UCSD participate in this training program. Training will be provided in a wide range of techniques including electrophysiology, magnetoencephalography, functional magnetic resonance imaging and computational modeling. Preference will be given for applicants whose research is consonant with the mission of the NIMH to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery, and cure.

The fellowships are supported by the National Institutes of Mental Health (NIMH) and provide an annual NIH stipend ranging from $39,264 - $47,820 depending on the years of postdoctoral experience and available funding. Please note that only individuals with less than 4 years of postdoctoral experience should apply due to UCSD’s 5-year limitation of postdoctoral appointments. Postdoctoral health insurance is also provided as part of the fellowship at a cap of $7,850 per fellow. Therefore, a brief letter or email from the faculty sponsor must be received as part of the application process acknowledging that supplemental support for salary and insurance will be provided by their department if needed.

PRIMARY TRAINING FOCI

1. **Sensory Processing and Perception.** Investigators are working on a broad range of topics that include psychophysics, electrophysiology, brain imaging and modeling studies. These include T. Albright, R. Buxton, V. de Sa, A. Dale, K. Dobkins, T. Gentner, D. Kleinfeld and T. Sharpee.

2. **Selective Attention.** The study of attention is broadly based and includes
investigations of the neural mechanisms and the perceptual consequences of space-based, feature-based, and object-based selective attention. These investigators include E. Courchesne, S. Hillyard, J. Reynolds and T. Sejnowski, J. Serences.

3. Learning and Memory. San Diego has an especially active research community studying mechanisms of memory at multiple levels ranging from synaptic plasticity to the cognitive neuropsychology of amnesia. The faculty studying memory on this training grant includes J. Brewer, E. Halgren, M. Kutas, L. Schreibman and L. Squire.

4. Cognitive Control. Executive control functions include brain processes that guide thoughts and behaviors through internally generated goals and plans. The investigators in this area include A. Aron, U. Bellugi, J. Elman and H. Poizner.

ELIGIBILITY Candidates must be citizens or permanent residents of the U.S. The Training Grant provides up to $7,850 per trainee in health insurance costs. We require home departments/mentors to cover the health insurance costs that exceed the allowable per trainee expense. In addition, trainees will incur a payback obligation during their first year of postdoctoral NIMH support and are required to complete a Payback Agreement. Awardees must comply with NIH PubMed requirements. UCSD requires that postdoctoral fellows to have worked less than five years in a postdoctoral training position. Thus we only accept applications from candidates with four years or less of postdoctoral experience by the date of appointment (generally on July 1).

NEW APPLICATION INSTRUCTIONS Postdoctoral fellowship candidates who are not currently supported by this training program should submit a 10 page application for a project that can be completed in two years or less, written in consultation with the primary and secondary research sponsors, following the guidelines given below. The application should also include a CV and three letters of recommendation, including two from the faculty research sponsors (see below). Women and minority candidates are encouraged to apply.

CONTINUING APPLICATION INSTRUCTIONS Postdoctoral fellows who are currently being supported by this training program must reapply for an additional year of support by resubmitting the original application and an additional 3-page update on progress during the previous year. Include copies of all publications and meeting abstracts that have resulted from research supported during the training period.

TRAINING PROGRAM REQUIREMENTS
1. Postdoctoral fellows will be chosen from a pool of Ph.D. and M.D. applicants. Although it is expected that each trainee will receive two years of training, the second year of support is contingent on performance during the first year and all candidates must reapply.
2. Fellows will be trained in two or more major research techniques in cognitive neuroscience (outlined below) that will include the primary laboratory and a secondary laboratory. Special training courses on sterile techniques, animal handling, and surgery room procedures will be available for students working on vertebrate animals.
3. Fellows are expected to attend weekly laboratory meetings within the major laboratory as well as the weekly brown bag seminar series.
4. Fellows will meet once each month with all other postdoctoral fellows and predoctoral trainees to discuss research. Each month one of the trainees will be
responsible for presenting the research being performed in that student's laboratory.

5. Fellows will carry out a 3 to 6 month rotation in their secondary laboratory, including attendance at weekly research meetings.

6. Fellows are expected to present the results of their research at the major annual meetings of the Society for Neuroscience, the Cognitive Neuroscience Society, the Cognitive Science Society, Neural Information Processing Systems, and other major meetings.

7. A course on responsible conduct of research is required by NIH.

8. Finally, postdoctoral fellows will attend the fall welcoming meeting and the spring retreat involving all members of the training grant (students and faculty).

9. Postdoctoral fellows will present a 5-minute blitz talk during the Spring Retreat that will include a 3-slide PowerPoint presentation.

Application Guidelines:
Deadline: 12 noon on March 17, 2014

1. Cover (1 Page):
 Name:
 Institution and Year PhD granted:
 Citizenship Status:
 Ethnicity (self-reported):
 Race (self-reported):
 UCSD E-mail address:
 Gmail or other alternate email address:
 Primary research sponsor (from faculty list below):
 Secondary research sponsor (from faculty list below):
 Title of research project:
 Currently funded on NIH fellowship? (If yes, give end date of current fellowship):
 Abstract:

2. Background and Research Interests (1 page)
 Academic background
 Research training
 Research goals

3. Research Proposal (8 pages)
 Specific Aims
 Methods
 Proposed research
 Facilities and special equipment available
4. Individual Development Plan

UC San Diego IDP form:
http://postdoc.ucsd.edu/_files/training/UC%20San%20Diego%20IDP%20Form.docx

Comprehensive Skills Analysis Worksheet:
http://postdoc.ucsd.edu/_files/training/Comprehensive%20Skills%20Analysis%20worksheet.doc

5. Curriculum Vitae

6. Copies of Recent Publications Including abstracts
 (continuing applicants only)

7. Three Letters of Recommendation (2 letters from research sponsors).
 Your research sponsors should each submit a letter of recommendation directly to:
 incfellowships@inc.ucsd.edu Subject line should read:
 Postdoc_reference_Candidate_name

8. Completed Application
 Submit your completed application in PDF format directly to:
 incfellowships@inc.ucsd.edu Subject line should read:
 Postdoc_app_candidate_name

FACULTY RESEARCH SPONSORS

Co-directors:
Terrence J. Sejnowski and Steve Hillyard

Executive Committee:
Thomas Albright
Ursula Bellugi
Jeffrey Elman
Eric Halgren
Marta Kutas
Larry Squire

Participating Faculty:
Adam Aron
James Brewer
Richard Buxton
Eric Courchesne
Thomas Albright, Vision Center Laboratory, Salk Institute. Dr. Albright's laboratory focuses on the neural structures and events underlying the perception of motion, form and color. Through an integrative approach, which combines neurophysiological and psychophysical techniques, and computational modeling of neural networks, his laboratory is beginning to understand the mechanisms of higher-level vision in the visual cortex and to define their unique contributions to visual perception and visually-guided behavior.

Adam Aron, Department of Psychology, UCSD. Dr. Aron uses functional and structural MRI and Transcranial Magnetic Stimulation (TMS) to study neuropsychological and neurological patients to address a range of questions related to cognitive control. In particular, he is interested in how frontal/basal-ganglia circuits are engaged during cognition and in how pathology of these circuits relates to neuropsychiatric conditions such as impulse control disorders.

Ursula Bellugi, Laboratory of Cognitive Neuroscience, Salk Institute. Dr. Bellugi's laboratory studies the biological foundations of language and cognition. One approach she has taken involves examination of languages in different modalities: comparison of structure, acquisition, and processing of spoken and signed languages. Studies of signed languages of deaf people have shown that fully expressive languages can arise, outside of the mainstream of human spoken languages that exhibit the complexities of linguistic organization found in all spoken languages. Another line of research in her laboratory investigates the biological bases of cognition through coordinated studies across disciplines, involving selected populations with specific neurodevelopmental disorders of higher cognitive functions such as those with Williams Syndrome.

James Brewer, Departments of Radiology and Neurosciences, UCSD. Dr. Brewer's laboratory uses functional and structural magnetic resonance imaging (MRI) to study memory processes in volunteers with healthy memory and in patients with memory difficulties, such as in Alzheimer's disease (AD). This research focuses upon the medial temporal lobe (MTL), which shows selective damage early in the course of AD. The laboratory studies the contributions to memory that are made by distinct MTL substructures and the interaction of these structures with other brain regions.
Richard Buxton, Department of Radiology, UCSD. Dr. Buxton is a physicist by training and founding director of the UCSD Center for Functional MRI. His research interests focus on recently developed fMRI techniques for measuring patterns of activation in the brain, including basic studies of the physiological mechanisms that underlie fMRI, novel approaches to the design and analysis of fMRI experiments, and development of new imaging techniques to directly measure tissue blood flow.

Eric Courchesne, Department of Neurosciences, UCSD. Dr. Courchesne is interested in understanding attentional processing at the cellular, neural systems, and behavioral levels. He recently has obtained evidence that neocerebellar lesions can lead to dysfunction in attentional processes and may underlie deficits in shifting attention in patients with autism. Ongoing neuroimaging, neurophysiological, genetic and behavioral studies are investigating the neurobiology of autism and examining the roles of the neocerebellum and other neural systems in the dynamic control of selective attention.

Anders Dale, Neurosciences and Radiology Departments, UCSD. Dr. Dale is co-Director of the Multimodal Imaging Laboratory and specializes in the development and utilization of multimodality imaging technologies including functional MRI, DTI, PET, MEG, EEG, and optical imaging. Among his projects are the development of software tools for automated segmentation of the brain and application of these techniques for assessment of anatomical and physiological changes associated with normal brain development and aging, as well as brain related diseases such as schizophrenia, autism and Alzheimer's disease. Another major focus of Dr. Dale's research is on mapping the genetic influences on brain development using brain imaging and genome-wide association studies.

Virginia De Sa, Department of Cognitive Science, UCSD. Dr. De Sa studies unsupervised category learning and has developed an algorithm that makes use of information from other sensory modalities to constrain and help the learning of categories within single modalities. She has also shown that supervised learning can be improved by changing the way inputs interact. She has applied these algorithms to real-world visual and auditory data and compared them to human performance on the same tasks.

Karen Dobkins, Department of Psychology, UCSD. Dr. Dobkins studies visual perception and its underlying neural mechanisms, with an emphasis on development and plasticity. She focuses particularly on visual motion and color processing as a means of exploring the link between neural function and visual perception. Her research includes the study of altered visual perception in deaf subjects and the effects of selective attention on color and motion processing.

Jeffrey Elman, Department of Cognitive Science, UCSD. The major focus of Dr. Elman's has been on connectionist models of language, ranging from acoustic/phonetic processing to syntactic and semantic levels. In particular, he has used simple recurrent networks for predicting time series that occur in natural language. These networks are capable of extracting and representing abstract grammatical structure of considerable complexity. He has focused on modeling neural development in his recent work,
applying neural network models to investigate problems of learning and change under different assumptions about the initial state of the organism and its subsequent development. (*Rethinking Innateness: A Connectionist Perspective on Development*, MIT Press, 1996).

Timothy Gentner, Department of Psychology, UCSD. Dr. Gentner's research takes an integrative, systems-level approach to study the neural mechanisms that govern the sensory, perceptual, and cognitive processing of real-world acoustic signals. The goal is to find out how the brain represents behaviorally important, complex, natural stimuli, with a primary focus on the elaborate vocal communication system in songbirds.

Eric Halgren, Neurosciences and Radiology Departments, UCSD. Dr. Halgren is co-Director of the Multimodal Imaging Laboratory and carries out research that combines fMRI, MEG, and EEG within the context of structural MRI for high-resolution spatiotemporal mapping of brain activity during cognition. He validates these measures using intracranial recordings from microelectrode arrays in patients with epilepsy. Dr. Halgren's research aims to identify, locate and characterize the neurocognitive stages used to encode and interpret meaningful stimuli such as words and faces. The overall goal is to understand fundamental integrative processes of memory and cognition at the synaptic and system levels.

Steven Hillyard, Department of Neurosciences, UCSD. Dr. Hillyard’s research combines electrophysiological and magnetoencephalographic recordings with functional MRI to study the brain systems that mediate selective attention. The overall aim is to identify and characterize spatio-temporal patterns of neural activity in different cortical areas that underlie specific information processing stages during perception, selective attention, and stimulus recognition. Another major line of research is aimed at identifying the mechanisms by which auditory and visual stimuli are integrated in the brain to form multimodal perceptual experience.

David Kleinfeld, Department of Physics, UCSD. Dr. Kleinfeld studies how the vibrissa sensorimotor system of rats enables animals to extract a stable picture of the world from the blur of inputs obtained with their actively moving sensors. Ongoing studies address the detailed muscular control of the vibrissae, and the modularity and interaction of brainstem nuclei involved in exploratory whisking. Additional projects include electrophysiological investigation of correlates of vibrissa contact and the fusion of contact and position signals, as well as exploration of intracellular mechanisms for nonlinear mixing of rhythmic whisking signals in neocortex. Experiments also address the sensory feedback in cortical control of exploratory whisking, and the roles of arousal and cholinergic input in the control of whisking.

Marta Kutas, Department of Cognitive Science, UCSD. Dr. Kutas investigates language and memory processes, primarily using electrophysiological recording techniques with ERPs. Her studies of memory have shown specific patterns of brain activation associated with encoding and recognition processes for both episodic and semantic memory. Other processes under investigation include semantic and repetition priming and amnestic memory disorders. Dr. Kutas’ methods reveal the
precise timing of memory storage and retrieval operations for both verbal and non-verbal items.

Howard Poizner, Institute for Neural Computation, UCSD. Dr. Poizner’s goal is to better understand the neural bases of human executive motor control. He analyzes the nature of the breakdown in motor control in patients with selective failure of specific motor (or sensory) systems of the brain, such as occurs in Parkinson’s disease, cerebellar ataxia, or limb deafferentation. He is also investigating how Parkinson’s patients reach to targets presented in 3D space under various conditions of visual feedback; and using 3D immersive virtual environments.

John Reynolds, Systems Neurobiology Laboratory, Salk Institute. Dr. Reynolds studies the neural mechanisms of selective visual attention at the level of the individual neuron and the cortical circuit and relates these to perception and conscious awareness. He records from multiple neurons in the visual cortex of monkeys to identify the regions where the representations of objects compete with one another and create a computational bottleneck. He seeks to understand this selection process using a combination of psychophysics, neurophysiology, and computational neural modeling approaches.

Terrence Sejnowski, Computational Neurobiology Laboratory, Salk Institute and Department of Biology, UCSD. Dr. Sejnowski uses computational models and experimental approaches at several levels of investigation ranging from the biophysical level to the systems level. Realistic models of electrical and chemical signal processing within and between neurons are used as an adjunct to physiological experiments. Network models based on the response properties of neurons are studied to explore how populations of neurons code and process information. These studies are aimed at elucidating how sensory information is represented and how sensorimotor transformations are organized. (*Computational Brain*, MIT Press, 1992, 23 Questions in Systems Neuroscience, Oxford, 2006).

John Serences, Department of Psychology, UCSD. Dr. Serences' research focuses on understanding how behavioral goals influence perception, decision-making, and memory. To investigate the influence of behavioral goals and previous experiences on perception and cognition, his group employs a combination of psychophysics, computational modeling, and neuroimaging techniques.

Tatyana Sharpee, Computational Neurobiology Laboratory, Salk Institute. Dr. Sharpee works on theoretical principles for information processing in the brain. She is interested in how sensory processing in the brain is shaped by the animal's need to
create parsimonious representations of events in the outside world. Her approaches are derived from methods in statistical physics, mathematics, and information theory. She is particularly interested in understanding how neural feature selectivity is influenced by, and to what extent is determined by, the statistics of real-world inputs. One of her long-term goals is to understand how invariant feature selectivity is achieved in cortex.

Larry R. Squire, Department of Psychiatry, UCSD. Dr. Squire studies the neuropsychology of memory in humans and non-human. His research involves studies of identified patients with amnesia. The analysis of such cases provides useful information about the structure and organization of normal memory. He also studies non-human primates in an effort to understand anatomy of memory functions in collaboration with S. Zola. The goal is to identify medial temporal lobe and diencephalic structures important for memory.